Klik di alamat berikut untuk menjawab dan muat turun soalan UPSR Matematik :
http://sktepus.zoom-a.com/KOLEKSIPRAUPSR2008.html
Rabu, 12 Oktober 2011
Isnin, 10 Oktober 2011
Mathematics Study Tips
1. Always says to yourself that you can do it!
2. The more you practice, the better you will be at it.
3. Try to understand the basic Mathematics concepts. Don't trying to memorise it.
4. Try to solve the some type of Mathematics problems using different methods if possible.
2. The more you practice, the better you will be at it.
3. Try to understand the basic Mathematics concepts. Don't trying to memorise it.
4. Try to solve the some type of Mathematics problems using different methods if possible.
KERANA PENSEL ITU.......
kerana pensel itu..aku menulis angka,
kerana pensel itu..aku berbicara,
kerana pensel itu..aku mencuba,
kerana pensel itu..aku BERJAYA!
UPIN & IPIN BELAJAR MENGIRA
SIFIR 3
Hai, adik-adik semua...Hari ini kita akan meneruskan ke sifir 3. Sifir 3 mestilah dimulai dengan nombor 3 dan ia juga merupakan gandaan 3. Cuba adik-adik perhatikan bagaimana membentuk sifir 3 dan kemudian adik-adik cuba menjawab beberapa soalan di bawah:
1 x 3 = 3
2 x 3 = 3 + 3 = 6
3 x 3 = 3 + 3 + 3 = 9
4 x 3 = 3 + 3 + 3 + 3 = 12
5 x 3 = 3 + 3 + 3 + 3 + 3 = 15
Baiklah, berapakah jawapan 7 x 3? (A)19 (B) 21 (C) 23
Selamat mencuba....nanti kita bersambung di SIFIR 4
LATIHAN MATEMATIK TAHUN 5..SELAMAT MENCUBA
WHOLE NUMBERS.
A. Write the place value for each underlined digit.
1. 128 = | 11. 3 421 = |
2. 523 = | 12. 9 636 = |
3. 3 456 = | 13. 67 890 = |
4. 5 7891 = | 14. 43 247 = |
5. 768 = | 15. 8 764 = |
6. 69 = | 16. 34 689 = |
7. 4 568 = | 17. 3 412 = |
8. 176 534 = | 18. 8 4785 = |
9. 24 9847 = | 19. 129 873 = |
10. 72 6312 = | 20. 22 546 = |
B. Write the digit value of the underline digit.
1. 3 421 = | 11. 28 = |
2. 19636 = | 12. 523 = |
3. 67 890 = | 13. 113 456 = |
4. 143 247 = | 14. 45 7891 = |
5. 8 764 = | 15. 768 = |
6. 234 689 = | 16. 269 = |
7. 43 412 = | 17. 4 568 = |
8. 284 785 = | 18. 76 534 = |
9. 329 873 = | 19. 49 847 = |
10. 22 546 = | 20. 76 312 = |
C. Partition the following numbers.
a) 163 815 = 100 000 + 60 000 + 3000 + 800 + 10 + 5
= 1 hundred thousands + 6 ten thousands + 3 thousands + 8 hundreds + 1 tens+ 5 ones.
1. 152 356 = | |
2. 312 345 = | |
3. 256 789 = | |
4. 445 692 = | |
5. 138 753 = | |
6. 35 678 = | |
7. 134 569 = | |
8. 13 789 = | |
9. 257 982 = | |
10. 213 456 = | |
E. Write the following values.
1. 5 thousands , 3 hundreds , 3 tens , 4 ones = ___________
2. 3 ten thousands, 4 thousands , 5 hundreds , 2 tens , 7 ones = ___________
3. 4 thousands , 5 hundreds, 8 tens , 6 ones. = ___________
4. 6 ten thousands, 7 thousands , 3 hundreds , 5 tens , 2 ones = ___________
5. 3 thousands , 8 hundreds , 7 tens , 8 ones. = ___________
6. 4 hundreds , 6 tens , 8 ones = ___________
7. 9 hundreds , 7 tens , 5 ones = ___________
8. 100 000 + 80 000 + 4000 = ____________
9. 40 000 + 8000 + 90 + 5 = ____________
10. 7000 + 600 + 50 + 3 = ____________
F. Write the following numbers in words.
1. 456 | |
2. 17 843 | |
3. 16 549 | |
4. 1348 | |
5. 175 243 | |
6. 343 721 | |
7. 268 756 | |
8. 2347 | |
9. 46 742 | |
10. 167 825 | |
G. Write the following words in figures.
1. Four hundred and thirty-five = _______________
2. 0ne hundred three thousand seven hundred and forty-three = ________________
3. Ten thousand six hundred and four = ________________
4. Two hundred twenty-five thousand two hundred and eighty-three = ____________
5. One thousand eight thousand seven hundred and twenty-six = _______________
6. Thirty eight thousand four hundred and sixty = _________________
7. Eight hundred and fifty-seven = __________________
8. Nine thousand one hundred and twelve = _________________
9. Forty-six thousand five hundred and eighty-six = _________________
10. Seven thousand three hundred and fifty-one = _________________
11. One thousand three hundred ninety-five. = _________________
12. Sixty-five thousand two hundred and seven. = __________________
H. Round off the following numbers to the nearest tens.
1. 453 = |
2. 1 234 = |
3. 789 = |
4. 1 367 = |
5. 23 876 = |
6. 67 234 = |
7. 432 = |
8. 567 = |
9. 3 564 = |
10. 7 865 = |
11. 123 456 = |
12. 276 589 = |
13. 251 232 = |
14. 112 321 = |
I. Round off the following numbers to the nearest hundreds.
1. 453 = |
2. 231 234 = |
3. 789 = |
4. 21 367 = |
5. 23 876 = |
6. 67 234 = |
7. 432 = |
8. 567 = |
9. 3 564 = |
10. 7 865 = |
11. 23 456 = |
12. 76 589 = |
13. 51 232 = |
14. 12 32 = |
15. 122 334 = |
J. Round off the following numbers to the nearest thousands.
1. 14 538 = |
2. 1 234 = |
3. 7 894 = |
4. 1 367 = |
5. 23 876 = |
6. 67 234 = |
7. 4 326 = |
8. 5 675 = |
9. 3 564 = |
10. 7 865 = |
11. 123 456 = |
12. 176 589 = |
13. 251 232 = |
14. 212 321 = |
K.
1. Underline the number that can be rounded off to 54660
54689 , 54659, 54664.
2. Underline the number that can be rounded off to 3500.
3476 , 3510, 3428.
3. Underline the number that can be rounded off to 43740
43731, 43742, 43736
4. Underline the number that can be rounded off to 23400
23410 , 23480 , 23375
5. Underline the number that can be rounded off to 5670
5676 , 5671, 5667.
6. Underline the number that can be rounded off to 89700.
89661, 89712, 88887.
7. 38636 is 38640 when rounded off to the nearest ______________________.
8. 67841 is 67800 when rounded off to the nearest ______________________.
9. 78352 is 78000 when rounded off to the nearest _______________________.
10. 7892 is 7900 when rounded off to the nearest ________________________.
Sabtu, 8 Oktober 2011
SEJARAH MATEMATIK & NOMBOR
Perkataan "matematik" berasal daripada perkataan Yunani, μάθημα (máthema), yang bermakna "sains, ilmu, atau pembelajaran"; μαθηματικός (mathematikós) bermaksud "suka belajar". Istilah ini kini merujuk kepada sejumlah ilmu yang tertentu -- pengajian deduktif pada kuantiti, struktur, ruang, dan tukaran.
Sementara hampir semua kebudayaan menggunakan matematik asas (mengira dan mengukur), pengembangan matematik baru telah dilaporkan dalam beberapa kebudayaan dan zaman. Sebelum zaman moden dan peluasan ilmu di merata-rata dunia, contoh-contoh tulisan pengembangan matematik baru mengancam kegemilangan pada sebahagian orang tempatan. Kebanyakan teks matematik kuno yang dapat diperolehi datang dari Mesir purba di Kerajaan Tengah sekitar 1300-1200 SM (Berlin 6619), Mesopotamia sekitar 1800 SM (Plimpton 322), danIndia kuno sekitar 800-500 SM (Sulba Sutras). Semua teks tersebut memberikan perhatian pada kononnya dipanggil Teorem Pythagoras, yang nampaknya pengembangan matematik terawal dan tersebar selepas aritmetik dan geometri asas. Bukti pertama yang benar aktiviti matematik di China dapat ditemui pada simbol berangka pada tulang keramat, yang bertarikh kira-kira 1300 SM [1] [2], sementara Dinasti Han di China Kuno menyumbangkan Buku Panduan Pulau Laut dan Sembilan Bab mengenai Seni Matematik dari abad ke-2 SM sehingga abad ke-2 M. Yunani dan kebudayaan keyunanian Mesir, Mesopotamia dan bandar Syracuse menambahkan ilmu matematik. MatematikJainisme meyumbang dari abad ke-4 SM sehingga abad ke-2 Masihi, sementara ahli matematik Hindu dari abad ke-5 dan ahli matematikIslam dari abad ke-9 membuat penyumbangan banyak pada matematik.
Satu ciri menarik perhatian mengenai sejarah matematik kuno dan Zaman Pertengahan adalah pengembangan lanjut matematik mengikut dengan berapa abad stagnasi. Mulanya di Zaman Pertengahan Itali di abad ke-16, pengembangan matematik baru, berinteraksi dengan penemuan saintifik baru, telah dilakukan pada tahap yang sentiasa bertambahan, dan bersambungan ke hari ini.
Langgan:
Catatan (Atom)